Polar Operators for Structured Sparse Estimation
نویسندگان
چکیده
Structured sparse estimation has become an important technique in many areas of data analysis. Unfortunately, these estimators normally create computational difficulties that entail sophisticated algorithms. Our first contribution is to uncover a rich class of structured sparse regularizers whose polar operator can be evaluated efficiently. With such an operator, a simple conditional gradient method can then be developed that, when combined with smoothing and local optimization, significantly reduces training time vs. the state of the art. We also demonstrate a new reduction of polar to proximal maps that enables more efficient latent fused lasso.
منابع مشابه
Structured Sparsity: from Mixed Norms to Structured Shrinkage
Sparse and structured signal expansions on dictionaries can be obtained through explicit modeling in the coefficient domain. The originality of the present contribution lies in the construction and the study of generalized shrinkage operators, whose goal is to identify structured significance maps. These generalize Group LASSO and the previously introduced Elitist LASSO by introducing more flex...
متن کاملImproved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملGeneralized Conditional Gradient for Sparse Estimation
Sparsity is an important modeling tool that expands the applicability of convex formulations for data analysis, however it also creates significant challenges for efficient algorithm design. In this paper we investigate the generalized conditional gradient (GCG) algorithm for solving sparse optimization problems—demonstrating that, with some enhancements, it can provide a more efficient alterna...
متن کاملFast Structured Eigensolver for Discretized Partial Differential Operators on General Meshes∗
In this work, we show a fast structured method for finding the eigenvalues of some discretized PDEs on general meshes, as well as symmetric sparse matrices. A fast structured multifrontal factorization scheme is considered, and the organization and partition of the separators in nested dissection for a general graph is considered for the purpose of efficient structured matrix operations. This s...
متن کامل